
Calculus 1
Final Exam – Solutions
November 4, 2022 (8:30 – 10:30)

1) Prove using the ε-δ definition that lim
x→1

3x2 − 3

x− 1
= 6.

Solution. Let ε > 0 be arbitrary and take δ = ε
3
. Then, 0 < |x− 1| < δ implies that

∣

∣

∣

∣

3x2 − 3

x− 1
− 6

∣

∣

∣

∣

=

∣

∣

∣

∣

3(x− 1)(x+ 1)

x− 1
− 6

∣

∣

∣

∣

= |3(x+ 1)− 6| = 3 |x− 1| < 3δ = ε.

Thus, lim
x→1

3x2 − 3

x− 1
= 6.

2) Apply l’Hospital’s Rule to find the following limit: lim
h→0

(1 + h)1/h − e

h
.

Solution. This limit is an indeterminate form of type 0
0
since lim

h→0
(1 + h)1/h = e. To apply

l’Hospital’s Rule, we need to compute the derivative of the function (1+h)1/h which is of the
form f(h)g(h) suggesting that logarithmic differentiation may be of use. Indeed, we have

ln
[

(1 + h)1/h
]

=
1

h
ln(1 + h)

(by a law of Logarithms) and differentiating both sides yields

[(1 + h)1/h]′

(1 + h)1/h
=

h

1 + h
− ln(1 + h)

h2
. (1)

On the left-hand side, we used the Chain Rule and on the right-hand side we employed the
Quotient Rule for ln(1+h)

h
, the Sum Rule for 1 + h and the Basic Derivative (h)′ = 1. We also

used the derivative of ln on both sides. Multiplying both sides of eq. (1) by (1 + h)1/h yields

[(1 + h)1/h]′ =

h

1 + h
− ln(1 + h)

h2
(1 + h)1/h

and l’Hospital’s Rule turns the limit in question into the following

lim
h→0

(1 + h)1/h − e

h
= lim

h→0

[(1 + h)1/h − e]′

[h]′
= lim

h→0

h

1 + h
− ln(1 + h)

h2
(1 + h)1/h − 0

1
. (2)

We used the Difference Rule and the Basic Derivatives (constant)′ = 0, (h)′ = 1. Again,
recall that lim

h→0
(1 + h)1/h = e, therefore finding the original limit is, due to the Product Law

of Limits, equivalent to finding

lim
h→0

h

1 + h
− ln(1 + h)

h2
. (3)
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This limit is an indeterminate form of type 0
0
so we may use l’Hospital’s Rule to get

lim
h→0

h

1 + h
− ln(1 + h)

h2
= lim

h→0

[

h

1 + h
− ln(1 + h)

]′

[h2]′
= lim

h→0

1

(1 + h)2
− 1

1 + h

2h
.

Here we used the Quotient Rule for h
1+h

, the derivative of ln as well as the Sum, Difference
and Chain Rules. Combining terms in the numerator of the last expression lets us evaluate
limit (3) by Direct Substitution:

lim
h→0

1

(1 + h)2
− 1

1 + h

2h
= lim

h→0

− ✓✓h

(1 + h)2

2✓✓h
= −1

2
lim
h→0

1

(1 + h)2
= −1

2

1

(1 + 0)2
= −1

2
.

This limit together with eq. (2) shows that

lim
h→0

(1 + h)1/h − e

h
= lim

h→0

h

1 + h
− ln(1 + h)

h2
lim
h→0

(1 + h)1/h = −1

2
· e = −e

2
.

3) We say that a function f has a fixed point at a ∈ dom(f) if f(a) = a. Prove the following
statement. [Hint: Use the Mean Value Theorem.]

“If f : R → R is differentiable everywhere and f ′(x) 6= 1 for all x ∈ R,
then f has at most one fixed point.”

Solution. We will prove the statement by contradiction.

Proof. Assume f has at least two distinct fixed points, say at a and b (a 6= b). Without loss
of generality, we may assume that a < b. Then, since the function is differentiable everywhere,
it is differentiable on the closed interval [a, b]. This implies that f continuous on [a, b], and
also differentiable on (a, b). Then, by the Mean Value Theorem, there is a c ∈ (a, b) such that

f ′(c) =
f(b)− f(a)

b− a
.

But we also have f(a) = a and f(b) = b since a and b are fixed points. Thus we get

f ′(c) =
f(b)− f(a)

b− a
=

b− a

b− a
= 1.

This contradicts the condition that f ′(x) 6= 1 at every x ∈ R. Therefore we conclude that
our initial assumption of f having at least two distinct fixed points must have been false, i.e.
f has at most one fixed point.

(Any other correct attempt also gets full marks).

4) Use the Maclaurin series for f(x) = (1 + x2) ln(1 + x) to find f (2022)(0).

Solution. On the one hand, f (2022)(0) appears in the coefficient c2022 of x
2022 in the Maclaurin

series for f . Namely, we have

c2022 =
f (2022)(0)

2022!
(4)
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[see Theorem 5 in Section 11.10 of the Textbook]. On the other hand, the same coefficient
of x2022 can be found by multiplying the Maclaurin series for ln(1 + x) [Table 1 in Section
11.10] by x2 to get

ln(1 + x) = x− x2

2
+

x3

3
− · · · − x2020

2020
+

x2021

2021
−x2022

2022
+ . . .

x2 ln(1 + x) = x3 − x4

2
+

x5

3
− . . . −x2022

2020
+

x2023

2021
− x2024

2022
+ . . .

and then adding the two series [see “Taylor Series from Old” in Section 11.10] to find that
the coefficient of x2022 is

c2022 = − 1

2022
− 1

2020
= − 4042

2022 · 2020 . (5)

Comparing eqs. (4) and (5), we obtain

f (2022)(0) = − 4042

2022 · 20202022! = −2 · 20212 · 2019!.

5) Prove, via mathematical induction on N , that

∫ ∞

0

xNe−x dx = N ! for every integer N ≥ 0.

(Recall that 0! = 1! = 1 and n! = n · (n− 1) · · ·2 · 1 for n = 2, 3, . . . )

Solution. As told, we use proof by induction.

Proof. Base Case: For N = 0, we find

∫ ∞

0

x0e−x dx =

∫ ∞

0

e−x dx = lim
b→∞

∫ b

0

e−x dx = lim
b→∞

[

−e−x
]b

0
= lim

b→∞
(1− e−b) = 1 = 0!

Above we used the definition of improper integrals, the Difference Law and lim
b→∞

e−b = 0.

Induction Hypothesis: Next, we assume that the statement holds for some integer n ≥ 0,
i.e. that we have

∫ ∞

0

xne−x dx = n!

Induction Step: Finally, we prove, using the induction hypothesis, that the statement also
holds n + 1. We start with the integral on the left-hand side and apply integration by parts:

∫ ∞

0

xn+1e−x dx = lim
b→∞

∫ b

0

xn+1e−x dx
(∗)
= lim

b→∞

[

−xn+1e−x
]b

0
− lim

b→∞

∫ b

0

(n+ 1)xn · −e−x dx

= lim
b→∞

(−bn+1e−b) + (n + 1)

∫ ∞

0

xne−x dx
(∗∗)
= (n+ 1) · n! = (n + 1)!

At (∗), we integrate e−x and differentiate xn+1 and use the Difference Law of Limits. At (∗∗)
we use the induction hypothesis and the limit lim

b→∞
(−bn+1e−b) = 0 that can be shown via

l’Hospital’s Rule (applied (n + 1)-times). Thus the induction step is done and the proof is
complete.
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To conclude, we have shown by mathematical induction on N , that

∫ ∞

0

xNe−x dx = N ! for every integer N ≥ 0.

6) Determine the surface area of the solid obtained by rotating the curve C = {(x, cosh x) |
0 ≤ x ≤ 1} about the x-axis. Include all sides!

Solution. The surface in question can be divided up into three pieces. S1: y = cosh x
rotated about the x-axis, S2: the disk on the left-hand side at x = 0, and S3: the disk on the
right-hand side at x = 1. First, we calculate the area of y = cosh x rotated about the x-axis
using 2π

∫ b

a
y(x)

√

1 + (dy/dx)2 dx [see the lecture notes or Equation 4 in Section 8.2]. We
find

S1 = 2π

∫ 1

0

cosh x

√

1 +

(

d cosh x

dx

)2

dx = 2π

∫ 1

0

cosh x

√

1 + (sinh x)2 dx

= 2π

∫ 1

0

cosh x
√

(cosh x)2 dx = 2π

∫ 1

0

(cosh x)2 dx.

There are multiple ways to evaluate this integral. One possibility is to use the (exponential)
definition of the hyperbolic cosine. Recall cosh x = ex+e−x

2
. Hence (cosh x)2 = ( e

x+e−x

2
)2 =

e2x+2+e−2x

4
. Substituting this in the integral yields

S1 = 2π

∫ 1

0

(cosh x)2 dx = 2π

∫ 1

0

e2x + 2 + e−2x

4
dx

=
π

2

[

e2x

2
+ 2x− e−2x

2

]1

0

= π

(

e2

4
+ 1− e−2

4

)

.

Next, we calculate the surface areas of the circles that ‘cap off’ the surface rotated about the
x-axis. These circles have radii cosh 0 = 1 and cosh 1 = e1+e−1

2
, respectively. Thus we get

S2 = π and S3 = π(cosh 1)2 = π( e
2

4
+ 1

2
+ e−2

4
). Now the total surface area is given by the

sum of S1, S2 and S3:

S = S1 + S2 + S3 = π

(

e2

4
+ 1− e−2

4
+ 1 +

e2

4
+

1

2
+

e−2

4

)

= π
5 + e2

2
.

Note: if your answer looked nothing like this, fear not.

Another way to solve the problem is by evaluating the integral S1 and the radius in S3 in
terms of hyperbolic functions via the hyperbolic identities cosh2 x−sinh2 x = 1 and cosh 2x =
cosh2 x+ sinh2 x. This way we obtain

S1 = 2π

∫ 1

0

cosh2 x dx = 2π

∫ 1

0

1 + cosh 2x

2
dx = π

∫ 1

0

(1 + cosh 2x) dx = π

[

x+
sinh 2x

2

]1

0

= π

(

1 +
sinh 2

2

)

and

S3 = π cosh2 1 = π
1 + cosh 2

2
.
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Thus the total surface area can be written as

S = S1 + S2 + S3 = π

(

1 +
sinh 2

2
+ 1 +

1

2
+

cosh 2

2

)

= π
5 + cosh 2 + sinh 2

2
=

5 + e2

2
.

7) Evaluate the definite integral

∫ 2
√
3

2

x+ 1

x
√
16− x2

dx.

Solution. The factor
√
16− x2 in the integrand suggests that a trigonometric substitution

should be used. Such a square root appears as the length of one of the legs in a right triangle
with the other leg being of length x and the hypotenuse of length 4.

√
16− x2

x
4

θ

If θ denotes the angle opposite the leg of length x, then we can express x using θ by simply
using the (right triangle) definition of the sine function:

sin θ =
x

4
⇒ x = 4 sin θ ⇒ dx = 4 cos θ dθ.

Of course, we can also express the length of the other leg in terms of θ as
√
16− x2 = 4 cos θ.

Finally, we look at the limits of integration and see that x = 2 means sin θ = 1
2
, i.e. θ = π

6

and x = 2
√
3 implies sin θ =

√
3
2
, i.e. θ = π

3
. Thus the substitution x = 4 sin θ results in the

following

∫ 2
√
3

2

x+ 1

x
√
16− x2

dx =

∫ π/3

π/6

4 sin θ + 1

4 sin θ✘✘✘✘4 cos θ
✘✘✘✘4 cos θ dθ =

∫ π/3

π/6

(

1 +
1

4 sin θ

)

dθ.

Integrating term by term, we see that the first term is a basic integral that yields

∫ π/3

π/6

1 dθ = [θ]
π/3
π/6 =

[π

3
− π

6

]

=
π

6
,

whereas the second term is a trigonometric integral that can be evaluated via the Weierstrass
substitution u = tan(θ/2), which recall means that sin θ = 2u/(1+u2) and dθ = 2 du/(1+u2).
As for the limits of integration, we have θ = π/6 giving u = tan(π/12) and θ = π/3 giving
u = tan(π/6). One may express these values more explicitly using trigonometric identities,
although it’s not strictly necessary. We get

∫ π/3

π/6

1

4 sin θ
dθ =

∫ tan(π/6)

tan(π/12)

✘✘✘✘1 + u2

4 · ✁2u
✁2

✘✘✘✘1 + u2 du =

∫ tan(π/6)

tan(π/12)

1

4u
du =

[

ln u

4

]tan(π/6)

tan(π/12)

.

Therefore the integral in question evaluates to

∫ 2
√
3

2

x+ 1

x
√
16− x2

dx =
π

6
+

ln tan(π/6)− ln tan(π/12)

4
.
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Remark. Using the Laws of Logarithms we may write the result as follows

π

6
+

1

4
ln

tan(π/6)

tan(π/12)
.

Of course, it is possible to express the tangent values more explicitly using trigonometric
identities. Namely, we have tan(π/6) = sin(π/6)

cos(π/6)
= 1/2√

3/2
= 1√

3
and

tan(π/12) =
sin(π/12)

cos(π/12)
=

√

sin2(π/12)

cos2(π/12)
=

√

1− cos(2π/12)

1 + cos(2π/12)
=

√

√

√

√

1−
√
3
2

1 +
√
3
2

=

√

2−
√
3

2 +
√
3

=

√

2−
√
3

2 +
√
3
· 2−

√
3

2−
√
3
=

√

(2−
√
3)2

22 −
√
3
2 = 2−

√
3.

This means that
tan(π/6)

tan(π/12)
=

1

2
√
3− 3

=
2
√
3 + 3

(2
√
3)2 − 32

=
2√
3
+ 1

hence the integral evaluates to

π

6
+

1

4
ln

(

2√
3
+ 1

)

= 0.71551 . . . .

8) Solve the initial value problem y′(x)− y(x)

x
= x2 + 3x− 2, y(1) = 4.

Solution. This is a first-order linear ODE, thus we can use an integrating factor to solve it.

Namely, we have I(x) = e
∫
(− 1

x
) dx = e− lnx = 1

x
and multiplying both sides of the equation

by it yields
y′(x)

x
− y(x)

x2
= x+ 3− 2

x
.

Now we have the left-hand side equal to

(

y(x)

x

)′

, so we have

(

y(x)

x

)′

= x+ 3− 2

x
.

Integrating on both sides with respect to x yields

y(x)

x
=

x2

2
+ 3x− 2 ln(x) + C

from which we get the general solution

y(x) =
x3

2
+ 3x2 − 2x ln(x) + Cx.

This combined with the initial condition y(1) = 4 means that

4 = y(1) =
1

2
+ 3− 0 + C ⇒ C =

1

2
.
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Therefore the solution for the given initial value problem is

y(x) =
x3

2
+ 3x2 − 2x ln(x) +

x

2
, (x > 0).

9) Find all complex number solutions of the equation z2 = z. Write your final answer in
algebraic form.

Solution. Writing z = a + ib allows us to express the left-hand side of the equation as

z2 = (a+ ib)2 = a2 + i2ab− b2.

This gives the real part Re(z2) = a2 − b2 and the imaginary part Im(z2) = 2ab. On the other
hand, we can also express the right-hand side as:

z = a− ib

which gives the real part Re(z) = a and the imaginary part Im(z) = −b. To have z2 = z
we need the real parts to match Re(z2) = Re(z) and also the imaginary parts to match
Im(z2) = Im(z). Thus we get the following system of equations for a and b:

{

a2 − b2 = a

2ab = −b
⇔

{

a(a− 1) = b2

(2a+ 1)b = 0

From the second equation we see that we must have a = −1

2
or b = 0. In fact, we can’t

have both, because that would lead to the contradiction
3

4
= 0 in the first equation. Thus we

have two distinct cases to consider:

• Case 1: If b = 0, then the first equation reads a(a − 1) = 0 implying a = 0 or a = 1.
This gives the two solutions of the original equation z2 = z, namely z = 0 and z = 1.

• Case 2: If a = −1

2
, then the first equation reads

3

4
= b2, or equivalently, b = ±

√
3

2
.

Therefore we have two more solutions of the equation z2 = z, namely z = −1

2
± i

√
3

2
.

With these, we excluded all possibilities.
To summarize, there are four complex number solutions of the equation z2 = z. They are

z = 0, z = 1, z = −1

2
+ i

√
3

2
, z = −1

2
− i

√
3

2
.
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